1. Introduction

Need for Wearable Electronics

- Invasive and Uncomfortable Sensors
 - Restricted applications where the sensing function is crucial to the subject's health
 - Medical
 - Military

- Truly Wearable Sensors
 - A close interdisciplinary cooperation is necessary
 - Electronics, textiles, clothing science
 - Trade-off for sensing accuracy must be overcome
 - For full-range applications

- Clothing as a New Platform
 - Fully integrated electronic functionality
 - Modular approach
Introduction

What Makes Something Wearable

- **Comfort**
 - Size, weight, and shape
 - Small and lightweight packages with curved shapes work best in the body context
 - This is why many wearables-oriented circuit boards are designed with rounded edges and corners
 - Placement
 - Keep heavier items close to the core
 - Run connections along seams and edges
 - Pockets offer excellent support and protection for electronic components
 - Lining also provide lots of opportunities

- **Durability**
 - Strain relief
 - Continually tugged connection is likely to eventually break
 - Insulation
 - Use layout, stitching, coating, layering, and lining

Yarn Layout

Zigzag Stitch

Fabric Paint
What Makes Something Wearable

- **Durability**
 - Designing a circuit that contains removable modules can increase the durability
 - The ability to remove sensitive components makes it easier for washing
 - Good connectors are required

- **Protection**
 - A layer of foam, batting, or felt could protect exposed elements
 - Waterproof case or coating can protect circuit
 - A lining can protect an exposed circuit from bare skin

Usability

- Wearables should be comfortable to use
 - Does it function well as the wearable it is intended to be?
 - Do the electronics function as expected?
 - Does it make for a 'good' or 'satisfying' or 'successful' experience for the wearer?

Aesthetics

- Importance
 - Wearables are objects that occupy your most intimate spaces
 - How they look influences how you use them

- Question
 - Whether to hide or reveal wearable devices
 - Hiding increase the opportunity for seamless integration of technology
 - Revealing has stylistic and functional advantages
Chronology of Wearable Electronics

Mid 1990s
- Practical Possibility Emerged
 - Carrying an always-on computer combined with a HMD and control interface

July 1996
- "Wearables in 2005" Workshop in July 1996
 - Sponsored by DARPA (Defense Advanced Research Projects Agency)
 - Attended by industrial, university, and military visionaries
 - Abstract definition of wearable computing
 » Data gathering and dissemination devices which enable the user to operate more efficiently
 » Devices which are carried or worn by the user during normal execution of his/her tasks

1997
- Further Definition of Wearable Computing (Steve Mann)
 - A wearable computer is worn in such a way as in can be regarded as being part of the user
 - It is controllable, not necessarily involving conscious thought or effort
 - It is always active and operates in real time though it may have a sleep mode

Steve Mann (1962~, Prof. at U. of Toronto)
- "Steve Mann is the perfect example of someone who persisted in his vision and ended up founding a new discipline" - Nicholas Negroponte (MIT Media Lab)
Textiles for Information Processing

- Requirements for a Well-designed Information Processing System
 - Easy access to information anytime, at any place, by anyone
 - Customizable and be in tune with the human

- Clothing as an Information Processing System
 - Clothing is always there and in complete harmony with the individual

Textiles as an Ideal Platform for Information Processing System

- Ultimate flexibility in system design
 - Broad range of fibers, yarns, fabrics, and manufacturing techniques
- Large surface area for hosting the large number of sensors and actuators
 - Can be deployed over large terrains
- Fault tolerance
 - Built in redundancies
Introduction

Application Groups of Wearable Electronics

- User Convenience
 - Built-in electronics may control and support more advanced textile functionalities
 - Temperature control
 - Moisture control

- User Interfacing
 - Enables the interfacing between the user and electronic belongings or external networks
 - Microphone
 - Speaker
 - Textile keyboards
 - Flexible display

Product Identification

- Textile based RFID (Radio Frequency IDentification) tags
 - Use textile based antenna
 - Complex tags contain simple micro-controllers and non-volatile memories

- Enable intelligent logistics
 - Stock Control
 - Quality control
 - Anti-theft protection

- Enable intelligent washing machine
 - Washing machine can recognize type and number of clothes
 - Optimum treatment method can be determined automatically
Examples of Wearable Electronics

- **Application**
 - Prevention Tool
 - Monitor a person's environment
 - Warn or project when possible threats are detected
 - Rehabilitation
 - Drug supply
 - Muscle activation

- **Key Technology**
 - Packaging of electronic elements
 - Interconnection technology for deep textile integration

Examples of Wearable Electronics

- **ADL (Activities of Daily Living) Monitoring**
 - In-shoe pressure and acceleration sensor system (Sazonov et al. 2009)
 - Step counting device for Parkinson's diseases patients (Giansanti et al. 2008)
 - Wearable sensor to monitor the recovery after abdominal surgery (Aziz et al. 2007)

- **LiveNet (MIT Media Lab)**
 - Detecting Parkinsonian symptom and epileptic seizure
 - Measures 3-D acceleration, electrocardiogram(ECG), electromyograph(EMG), skin conductance

- **LifeGuard (NASA)**
 - Monitor health status of individuals in extreme environments
Introduction

Examples of Wearable Electronics

- AMON (European Commission)
 - Wrist-worn device for monitoring high-risk patients with cardiorespiratory problems
 - Monitoring blood pressure, skin temperature, blood oxygen saturation, ECG

- MyHalo (Halo Monitoring)
 - Chest strap for monitoring falls, heart rate, skin temperature, sleep/wake patterns and so on
 - Reliable detection of fall is important but difficult
 - Bourke et al. 2008, Bianchi et al. 2010, Land and Messelodi 2009, ...

Examples of Wearable Electronics

- Proe-TEX (European Commission)
 - Smart garment for emergency-disaster personnel
 - Health status parameters of the user
 - Environmental variables
 - External temperature
 - Presence of toxic gases
 - Heat flux passing through
Designing a Wearable

Choosing a Form

- **Variety of Forms**
 - Jumpsuits
 - Wristbands
 - Gloves
 - Hats
 - Scarves
 - Socks
 - Jewelry
 - Underwear

Choosing Materials

- **Use both Hard and Soft Materials**
 - Hard circuits are excellent for creating small, complex, and robust circuits
 - Soft materials are advantageous for simple, pliable, flexible, and comfortable circuits

- **Choosing Components**
 - Printed circuit board design is useful for building wearable electronics but very difficult
 - Being thoughtful about the component choice can get you a long way
Designing a Wearable

Creating a Layout

- Think about a Three-dimensional Way
 - Physical design using a mannequin and garment will be helpful

Iterative Design

- You’re Never Going to Get It Totally Right the First Time
 - Create a first prototype
 - Wear it or have someone else wear it
 - Some of your design choices will likely work quite well
 - There will be things you didn’t expect
 - Learn from seeing the way something performs with actual use
 - Make some revisions and create a second prototype
 - Committing yourself to multiple iteration
Designing a Wearable

- **Maintaining Access**
 - Don’t Forget to Leave a Backdoor
 - Be sure not to enclose your circuit completely when incorporating your circuit

- **Experiment: Eight-Hour Wearable**

Functions of Smart Garment

- **Strain Measurement**
 - **Flexible Sensors**
 - Current research trends are to develop flexible sensors out of textile materials
 - Novel flexible strain sensors have been developed for use in smart clothing or textiles
 - The type, position and number of sensors depend on the end-use of the smart clothing
Functions of Smart Garment

- **Pressure Measurement**
 - Capacitive Sensors
 - Measurement of pressure during day-to-day, physical or sports activities
 - Providing an input interface for the wearer in the form of keyboard or touch pad
 - Provides detailed information on the pressure positions and forces

- **Biometric Measurement**
 - Textile Electrodes
 - Measurement of body temperature, heart rate, respiration rate, skin conductivity, etc.
 - Long-term continuous monitoring of patient's conditions
 - Help the medical team in the military field or in a rescue situation
Functions of Smart Garment

Signal Output

- Actuators
 - Uses audible sound to warn the wearer
 - Sensing knee sleeve which monitors the angle of knee
 - Flexible display to provide information to the wearer
 - Chromatic or electro-luminescent materials that react with electric current
 - Shape memory materials
 - Changes shape upon receiving a stimulus such as heat or electrical field

Data Management and Communication

- Short Range Communication
 - Effective transfer of data or power between different modules in the system
 - Conductive fibers, yarn, and textile circuitry
 - Bluetooth network

- Long Range Communication
 - 3G, 4G wireless communication
 - Power supply became a major problem
Applications

- Health Care
 - Biomedical Monitoring
- Sports
 - Smart Sports Wear
- Entertainment
 - Wearable Musical Instrument
- Fashion
 - Fashionable Smart Garment
- Safety
 - Environmental Control
- Experimental
 - Various Purposes

Materials

- Conductive Material
 - Conductive Fiber
 - Conductive Yarn
 - Conductive Fabric
 - Carbon Nanotube
- Textile based Sensors
 - Capacitive Sensor
 - Temperature/Pressure Sensor
- Energy Harvesting Material
 - Textile based Battery
 - Textile based Solar Cell
Rapid Prototyping

- Conventional Prototyping
 - NC Machining

- Rapid Prototyping
 - Modeling
 - 3D Printing

- RP in Fashion

Basic Electronics

- Circuits
 - Components
 - Design
 - Breadboard
 - Protoboard

- Switches
 - Textile Switches
Sensors and Actuators

- **Sensors**
 - Basics
 - Selection Guide
 - How to Use

- **Actuators**
 - Basics
 - Selection Guide
 - How to Use

Microcontrollers

- **Hardware**
 - Arduino
 - E-Textile Toolkits

- **Software**
 - IDE
 - C Language

- **Advanced Topics**
 - I/O Connections
 - Wireless Communication
Practical Examples

Simple Examples